

ASF and reservoirs: A moving target

Ferran Jori, DVM, PhD, HDR UMR ASTRE

One Week, Reservoir Worskhope

Bangkok 22-23nNovember 2018

Email: jori@cirad.fr

Introduction

African Swine fever

- One of the most severe diseases of pigs
- Results in acute hemorrhagic fever and high mortality (up to 100%)
- Can spread rapidly causing severe economic impact
- No treatment or vaccine is available
- Described almost a century ago (Mongomery , 1917).
- However, many gaps of knowledge remain about its natural reservoirs.

The main African reservoir

Sylvatic cycle

The main African reservoir

Domestic cycle

Sylvatic cycle

The Warthog-soft tick model

- Asymptoatic Carriers of ASFV at high prevalences in some areas
- Close relation with Argasid ticks in burrows
- Infection occurs mainly in young animals (viraemia) < 6 months
- At older age, ASFV is localized in lymph nodes
- Horizontal transmission to warthogs or pigs never demonstrated
- Role of Argasid ticks is considered essential in the transmission

The warthog –soft tick reservoir Main patterns

Location	ASF prevalence in wild warthogs (% positive)	Frequency of Infested burrows (ASFV rates in burrow ticks)
RSA (Kruger NP)	> 90	55 (1,39)
RSA North Transvaal <lat 25°<="" td=""><td>92</td><td>44 (5,2)</td></lat>	92	44 (5,2)
Tanzania (Serengeti)	100	88 (0,4)
Kenya (Mara, Nairobi)	100	30 (0,44)
Uganda (Ruwenzori)	82	65 (0, 017)

- High infection rates of warthogs
- High proportion of **burrows infested** with soft ticks
- Low rates of infected ticks
- •High diversity of viral strains

(Plowright, Thompson and Nieser, 1994)

Pattern confirmed in Mozambique (32 burrows inspected in GNP)

- **90** % of warthog burrows infested with ticks
- 72.4% of the 1660 tick samples infected ASF virus
- A total **19** unique **isolates**
- 60% closely related to Genotype II (circulating in EU and China)

Transboundary and Emerging Diseases

Transboundary and Emerging Diseases

ORIGINAL ARTICLE

Investigation into the Epidemiology of African Swine Fever Virus at the Wildlife – Domestic Interface of the Gorongosa National Park, Central Mozambique

C. J. Quembo^{1,2,3}, F. Jori^{4,5,6}, L. Heath¹, R. Pérez-Sánchez⁷ and W. Vosloo^{1,2,8}

earlyed: 14 March 2017

001:10.1111/tbs112700

ORIGINALARTICLE

WILEY

Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype

Several exceptions

Location	ASF prevalence in wild warthogs (% positive)	Frequency of Infested burrows (ASFV rates in burrow ticks)
RSA North Transvaal>Lat 25°	4	0
RSA (Mkuzi)	4	33 (0,060)
RSA (Umfolozi / Hluhluwe)	0	0 (0)
Kenya (Lolldaiga)	75	0

- Some variations between geographically close regions
- High infection rates of warthogs in the absence of tick infested burrows
- •Low infection rates of warthogs despite presence of ticks in burrows
- Wrong sampling design?
- •Many gaps regarding the drivers of tick abundance and ecology in burrows

Exceptions in West Africa

- Ornithodoros spp. ticks are not present
- Warthogs never been reported positive despite presence of virus
- No sylvatic cycle in West Africa
- ASFV is essentially mantianed by a domestic cycle

What about other African wild pigs?

Potamochoerus spp, reservoir of ASF?

Repeted virus isolation in wild populations	RSA ^{1,} Kenya ²	
ASFV Susceptibility	Yes	
Viraemia	30-90 days pi ³	
ASF Symptoms	No ⁴	
Characteristic Microscopic lesions	Yes ⁴	
Detection through serology	Rarely demonstrated ^{3,5}	
Horizontal transmission between bushpigs	Never demonstrated ³	
Transmission to domestic pigs through direct contact	Demonstrated ³	
Infectivity of bushpig carcasses or offal	Unknown	
Transmission to ticks	Possible ^{3,4}	
Natural interactions with Argasid ticks	Unknown	

4 Oura et al., 1998 5 Haresnape et al., 1985

3 Anderson et al., 1998

1 Masveld, 1963

2 De Tray, 1962

Natural transmission patterns

- Buhspigs and domestic pigs can meet in crops
- Cases of hybridisation are reported
- How often? Whar are the drivers?

Comparison of three methods to assess the potential for bushpig-domestic pig interactions at the livestock- wildlife interface in Uganda

Ariane Payne , Peter Ogweng , Alfred Ojok, Eric Marcel, Charles Etter , Emmanuelle Gilot , Charles Masembe , Karl Ståhl and Ferran Jori frontiers in Veterinary Science

ORIGINAL RESEARCH published: 14 April 2016 doi: 10.2088/hwb.2016.00201

۲

Wild and Domestic Pig Interactions at the Wildlife–Livestock Interface of Murchison Falls National Park, Uganda, and the Potential Association with African Swine Fever Outbreaks

Esther A. Kukieka^{1*}, Ferran Jori³³, Beatriz Martinez-López¹, Erika Chenais⁴³, Charles Masembe⁸, David Chavernac⁷ and Kari Stähl⁴³

Mandra for Antonio Diversional Mandrata and Discontinuous (CAMARE) 144, Mandrata & Caldwards and Caldwards

Knowledge of their role as reservoirs

	Warthog	Bushpig	Red river hog	Giant forest hog
Infection	Confirmed	Confirmed	Unknwon	Confirmed
Prevalence	0-100%	Unknown	Unknown	Unknown
Transmission pathways to pigs	Tick warthog dynamics	Unknown	Unknown	Unknown

Permanent source of virus for other territories

Many gap persist

1st incursion in Europe: 1957

Sus scrofa: What are their role?

- Same species as wild boar
- Seme sensitivity to the virus
- 95% mortality

Mediterranean

- Wild boars became infected in the Iberian Penisula and Sardinia
- Disease is fatal in 90-95% of wild boars
- In the absence of contacts with infected pigs, disease became self-extinct in WB populations

Eastern Europe

Eastern Europe

- Slow spread of the disease : 1 2 km/month
- No self extinction of the disease in wild boar populations
- Epidemiological picture suggests of maintainance in natural wild boar populations
 - Why are wild boar populations maintaining the virus?
 - What has changed regarding previous observations in Mediterranean countries?

Role of wild boar carcasses

- In Eastern Europe, frozen carcasses of infected dead animals can be maintained during months in the environment.
- ASF virus able to resist for several (3-6) months in an infected tissues
- Can survive long winters and allow re-infection
- Does that mean wild boars are eating their own carcasses?

Study of trophic behaviour

- 288 carcasses monitored by camera traps
- 122 160 pics taken (16 000 with WB)
- 30% visits to carcass led to contacts with dead conspecifics
- No evidence of interspecific scavenging (canibalism)
- But risky contacts with infected carcasses
 - Sniffing
 - Poking
 - Eating larvae from soil
 - Chewing bones

- Mechanistic modelling of spatio-temporal data ASF cases among WB populations fits with some level of carcass transmission
- But perhaps also other causes?

Potential role of biting flies ?

ASF i wild boars and domestic pigs in Estonia, Latvia, Lithuania and Poland in 2015-2017 Received: 27 February 2018 Revised: 1 May 2018 Accepted: 8 May 2018

DOI: 10.1111/tbed.12918

RAPID COMMUNICATION

WILEY Judanta and Page

Infection of pigs with African swine fever virus via ingestion of stable flies (*Stomoxys calcitrans*)

Ann Sofie Olesen¹ | Louise Lohse¹ | Mette Frimodt Hansen² | Anette Boklund² | Tariq Halasa² | Graham J. Belsham¹ | Thomas Bruun Rasmussen¹ | Anette Bøtner¹ René Bødker²

Conclusions

- Many gaps of knwoledge remain in Africa and EU
- Hot topic that will certainly require a lot of attention in the next few years ala over the world (including Asia)
- Wild boar populations are increasing worlwide
 - Challenge for ASF spread in Asia
 - Challenge for the conservation Asian wild suid species ?

Thank you.

